Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38087779

RESUMO

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Assuntos
HIV-1 , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , HIV-1/fisiologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacologia , RNA Interferente Pequeno/genética
2.
Crit Care Nurse ; 43(6): 34-46, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035620

RESUMO

BACKGROUND: Patients critically ill with COVID-19 develop acute respiratory distress syndrome (ARDS) and may undergo prone positioning. OBJECTIVE: To compare the effects of prone positioning on oxygenation, intensive care unit length of stay, and intubation days in patients with COVID-19 ARDS and patients with non-COVID-19 ARDS. METHODS: A convenience sample of intubated patients with COVID-19 and moderate to severe ARDS (per Berlin criteria) was compared with historical data from a retrospective, descriptive medical record review of patients with non-COVID-19 ARDS. The historical comparison group was age and sex matched. RESULTS: Differences in Po2 to fraction of inspired oxygen ratios between the COVID-19 ARDS group (n = 41) and the non-COVID-19 ARDS group (n = 6) during the first 7 days of prone positioning were significant at the end of prone positioning on day 1 (P = .01), day 3 (P = .04), and day 4 (P = .04). Wilcoxon signed-rank tests showed that prone positioning had a positive impact on Po2 to fraction of inspired oxygen ratios from day 1 through day 6 in the COVID-19 ARDS group and on day 2 in the non-COVID-19 ARDS group. CONCLUSION: This retrospective review found greater improvement in oxygenation in the COVID-19 ARDS group than in the non-COVID-19 ARDS group. This finding may be attributed to the assertive prone positioning protocol during the pandemic and teams whose skills and training were likely enhanced by the pandemic demand. Prone positioning did not affect intensive care unit length of stay or intubation days in either group.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Decúbito Ventral , Estudos Retrospectivos , Síndrome do Desconforto Respiratório/terapia , Oxigênio , Respiração Artificial
3.
Stem Cell Res Ther ; 12(1): 528, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620229

RESUMO

BACKGROUND: Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. METHODS: Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. RESULTS: A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice-providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. CONCLUSIONS: Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Modelos Animais de Doenças , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Sci Adv ; 6(30): eaay9206, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766447

RESUMO

Despite advances in hematopoietic stem/progenitor cell (HSPC) transplant for HIV-1-infected patients, the impact of a preexisting HIV-1 infection on the engraftment and clonal repopulation of HSPCs remains poorly understood. We have developed a long terminal repeat indexing-mediated integration site sequencing (LTRi-Seq) method that provides a multiplexed clonal quantitation of both anti-HIV-1 RNAi (RNA interference) gene-modified and control vector-modified cell populations, together with HIV-1-infected cells-all within the same animal. In our HIV-1-preinfected humanized mice, both therapeutic and control HSPCs repopulated efficiently without abnormalities. Although the HIV-1-mediated selection of anti-HIV-1 RNAi-modified clones was evident in HIV-1-infected mice, the organ-to-organ and intra-organ clonal distributions in infected mice were indistinguishable from those in uninfected mice. HIV-1-infected cells showed clonal patterns distinct from those of HSPCs. Our data demonstrate that, despite the substantial impact of HIV-1 infection on CD4+ T cells, HSPC repopulation remains polyclonal, thus supporting the use of HSPC transplant for anti-HIV treatment.


Assuntos
Infecções por HIV , HIV-1 , Transplante de Células-Tronco Hematopoéticas , Animais , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Interferência de RNA
5.
Elife ; 82019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31657719

RESUMO

Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1-infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1-producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.


Assuntos
Células da Medula Óssea/patologia , Células da Medula Óssea/virologia , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Animais , Tomografia com Microscopia Eletrônica , Camundongos SCID , Microscopia , Microscopia de Fluorescência , Carga Viral
6.
Cell Stem Cell ; 25(4): 542-557.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495780

RESUMO

Invariant natural killer T (iNKT) cells are potent immune cells for targeting cancer; however, their clinical application has been hindered by their low numbers in cancer patients. Here, we developed a proof-of-concept for hematopoietic stem cell-engineered iNKT (HSC-iNKT) cell therapy with the potential to provide therapeutic levels of iNKT cells for a patient's lifetime. Using a human HSC engrafted mouse model and a human iNKT TCR gene engineering approach, we demonstrated the efficient and long-term generation of HSC-iNKT cells in vivo. These HSC-iNKT cells closely resembled endogenous human iNKT cells, could deploy multiple mechanisms to attack tumor cells, and effectively suppressed tumor growth in vivo in multiple human tumor xenograft mouse models. Preclinical safety studies showed no toxicity or tumorigenicity of the HSC-iNKT cell therapy. Collectively, these results demonstrated the feasibility, safety, and cancer therapy potential of the proposed HSC-iNKT cell therapy and laid a foundation for future clinical development.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Imunoterapia Adotiva/métodos , Células T Matadoras Naturais/fisiologia , Neoplasias/terapia , Animais , Células Cultivadas , Engenharia Genética , Humanos , Camundongos , Camundongos SCID , Células T Matadoras Naturais/transplante , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Immunol ; 20(2): 152-162, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643259

RESUMO

Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.


Assuntos
Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Pré-Escolar , Chlorocebus aethiops , DNA Viral/imunologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Humanos , Imunidade Inata , Células Jurkat , Macrófagos , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Cultura Primária de Células , Imunodeficiência Combinada Severa/sangue , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/imunologia , Células Vero
8.
Mol Ther Methods Clin Dev ; 9: 23-32, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29322065

RESUMO

Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting.

9.
Stem Cells Dev ; 25(24): 1863-1873, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27608727

RESUMO

The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34+ hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ-/-) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.


Assuntos
Alergia e Imunologia , Medula Óssea/fisiologia , Imunoterapia , Fígado/fisiologia , Timo/fisiologia , Animais , Linhagem da Célula , Humanos , Padrões de Herança/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/citologia , Timo/citologia
10.
Adv Drug Deliv Rev ; 103: 187-201, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151309

RESUMO

One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.


Assuntos
Síndrome de Imunodeficiência Adquirida/imunologia , Síndrome de Imunodeficiência Adquirida/terapia , Infecções por HIV/imunologia , Infecções por HIV/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Síndrome de Imunodeficiência Adquirida/genética , Síndrome de Imunodeficiência Adquirida/patologia , Animais , Terapia Genética/métodos , Infecções por HIV/genética , Células-Tronco Hematopoéticas/citologia , Humanos
11.
Methods Mol Biol ; 1364: 235-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26472455

RESUMO

RNAi is a powerful tool to achieve suppression of a specific gene expression and therefore it has tremendous potential for gene therapy applications. A number of vector systems have been developed to express short-hairpin RNAs (shRNAs) to produce siRNAs within mammalian T-cells, primary hematopoietic stem/progenitor cells (HSPC), human peripheral blood mononuclear cells, and in animal model systems. Among these, vectors based on lentivirus backbones have significantly transformed our ability to transfer shRNAs into nondividing cells, such as HSPC, resulting in high transduction efficiencies. However, delivery and long-term expression of shRNAs should be carefully optimized for efficient knock down of target gene without causing cytotoxicity in mammalian cells. Here, we describe our protocols for the development of shRNA against a major HIV co-receptor/chemokine receptor CCR5 and the use of lentiviral vectors for stable shRNA delivery and expression in primary human PBMC and HSPC.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Leucócitos Mononucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores CCR5/metabolismo , Antígenos CD34/metabolismo , Células HEK293 , Humanos , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
12.
Mol Ther Nucleic Acids ; 4: e236, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25872029

RESUMO

We described earlier a dual-combination anti-HIV type 1 (HIV-1) lentiviral vector (LVsh5/C46) that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT) mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1) vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC) either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

13.
Mol Ther Nucleic Acids ; 4: e227, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25689223

RESUMO

Transplantation of hematopoietic stem/progenitor cells (HSPC) modified with a lentiviral vector bearing a potent nontoxic short hairpin RNA (sh1005) directed to the HIV coreceptor CCR5 is capable of continuously producing CCR5 downregulated CD4+ T lymphocytes. Here, we characterized HIV-1 resistance of the sh1005-modified CD4+ T lymphocytes in vivo in humanized bone marrow/liver/thymus (hu BLT) mice. The sh1005-modified CD4+ T lymphocytes were positively selected in CCR5-tropic HIV-1-challenged mice. The sh1005-modified memory CD4+ T lymphocytes (the primary target of CCR5-tropic HIV-1) expressing sh1005 were maintained in lymphoid tissues in CCR5-tropic HIV-1-challenged mice. Frequencies of HIV-1 p24 expressing cells were significantly reduced in the sh1005-modified splenocytes by ex vivo cell stimulation confirming that CCR5 downregulated sh1005 modified cells are protected from viral infection. These results demonstrate that stable CCR5 downregulation through genetic modification of human HSPC by lentivirally delivered sh1005 is highly effective in providing HIV-1 resistance. Our results provide in vivo evidence in a relevant small animal model that sh1005 is a potent early-step anti-HIV reagent that has potential as a novel anti-HIV-1 HSPC gene therapeutic reagent for human applications.

14.
PLoS Pathog ; 10(10): e1004453, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330146

RESUMO

Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , HIV-1 , Mutação/genética , RNA Viral/genética , Animais , Evolução Biológica , Mapeamento Cromossômico , Modelos Animais de Doenças , Variação Genética/genética , Humanos , Camundongos , Receptores CXCR4/genética , Replicação Viral/fisiologia
15.
PLoS One ; 9(5): e96445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831610

RESUMO

The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences) of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Luciferases/genética , RNA Interferente Pequeno/metabolismo , Algoritmos , Linhagem Celular , DNA/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biblioteca Gênica , Vetores Genéticos , Células HEK293 , Humanos , Leucócitos Mononucleares/citologia , Regiões Promotoras Genéticas , Interferência de RNA , Receptores CCR5/genética , Linfócitos T/citologia , Transfecção
16.
Cell Stem Cell ; 14(4): 473-85, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24702996

RESUMO

In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work.


Assuntos
Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Células-Tronco Hematopoéticas/citologia , Linfócitos/citologia , Células Mieloides/citologia , Animais , Células Cultivadas , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/metabolismo , Macaca mulatta , Camundongos , Células Mieloides/metabolismo , RNA Interferente Pequeno/genética , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transgenes/fisiologia
17.
Nat Med ; 20(3): 296-300, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509526

RESUMO

The vast majority of new HIV infections result from relatively inefficient transmission of the virus across mucosal surfaces during sexual intercourse. A consequence of this inefficiency is that small numbers of transmitted founder viruses initiate most heterosexual infections. This natural bottleneck to transmission has stimulated efforts to develop interventions that are aimed at blocking this step of the infection process. Despite the promise of this strategy, clinical trials of preexposure prophylaxis have had limited degrees of success in humans, in part because of lack of adherence to the recommended preexposure treatment regimens. In contrast, a number of existing vaccines elicit systemic immunity that protects against mucosal infections, such as the vaccines for influenza and human papilloma virus. We recently demonstrated the ability of vectored immunoprophylaxis (VIP) to prevent intravenous transmission of HIV in humanized mice using broadly neutralizing antibodies. Here we demonstrate that VIP is capable of protecting humanized mice from intravenous as well as vaginal challenge with diverse HIV strains despite repeated exposures. Moreover, animals receiving VIP that expresses a modified VRC07 antibody were completely resistant to repetitive intravaginal challenge by a heterosexually transmitted founder HIV strain, suggesting that VIP may be effective in preventing vaginal transmission of HIV between humans.


Assuntos
Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Imunização/métodos , Vagina/virologia , Animais , Anticorpos Neutralizantes/química , Linfócitos T CD4-Positivos/citologia , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , HIV-1/genética , Humanos , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Mutação , Receptores CCR5/metabolismo , Fatores de Tempo , Vagina/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-26015947

RESUMO

Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4(+) T lymphocytes, and CD34(+) hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

19.
J Immunol ; 192(1): 110-22, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24307733

RESUMO

Orai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity. One of these molecules, compound 5D, inhibited CRAC channel activity by blocking ion permeation. When included during differentiation, Th17 cells showed higher sensitivity to compound 5D than Th1 and Th2 cells. The selectivity was attributable to high dependence of promoters of retinoic-acid-receptor-related orphan receptors on the Ca(2+)-NFAT pathway. Blocking of CRAC channels drastically decreased recruitment of NFAT and histone modifications within key gene loci involved in Th17 differentiation. The impairment in Th17 differentiation by treatment with CRAC channel blocker was recapitulated in Orai1-deficient T cells, which could be rescued by exogenous expression of retinoic-acid-receptor-related orphan receptors or a constitutive active mutant of NFAT. In vivo administration of CRAC channel blockers effectively reduced the severity of experimental autoimmune encephalomyelitis by suppression of differentiation of inflammatory T cells. These results suggest that CRAC channel blockers can be considered as chemical templates for the development of therapeutic agents to suppress inflammatory responses.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Receptores Nucleares Órfãos/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Íons/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteína ORAI1 , Receptores Nucleares Órfãos/deficiência , Receptores Nucleares Órfãos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Elementos de Resposta , Bibliotecas de Moléculas Pequenas , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismo
20.
PLoS Pathog ; 9(12): e1003812, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339781

RESUMO

The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5(+) CD4(+) T cells, which mainly consist of regulatory CD4(+) T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4(+) T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5(+) CD4(+) T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Viremia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...